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LElTER TO THE EDITOR 

Analysis of multilayer adsorption models without screening 
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$ Fysisk Instituft, Universitetet i Oslo, Blindern, 0316 Oslo, Norway 

Received 5 February I991 

Abstract. A class of recently introduced irreversible multilayer adsorption models without 
sereeningisanalysed.The basic kineticprocessofthesemadels leadstopowerlaw behaviour 
for the decay of the jamming coverage as a function of height. We find the exact value for 
the power law exponent. An approximate analytical treatment of these models and previous 
Monte Carlo simulations are found to be in goad agreement. 

A recent paper on the kinetics of multilayer adsorption in colloid systems has proposed 
the study of the effects of blocking (more precisely, random packing constraints) in 
the absence of any screening effects [l]. A simple generalization of the monolayer 
random sequential adsorption model [2-41 was suggested for this purpose. The central 
finding of the  Monte Carlo study reported in [ l ]  was a power law behaviour for the 
jamming coverages as a function of the layer number. The coverage is defined as the 
fraction of occupied sites in a given layer and the jamming limit is the long time limit. 

Multilayer random sequential adsorption was defined in [ I ]  as a model for the 
irreversible multilayer adsorption processes in colloid systems. For convenience we 
recall its definition. The model considers the deposition of k-mers on a lattice. A k-mer 
is defined as a cluster of k connected sites. In one dimension such a cluster consists 
of k consecutive sites. In two dimensions only simple geometrical shapes for the cluster, 
such as squares, have been considered. The deposition algorithm proceeds by first 
choosing at random a set of deposition sites for the cluster, i.e. an interval of length 
k for the one-dimensional case. Whether the cluster will be deposited depends on the 
state of all deposition sites. The state of a deposition site i is characterized by its height 
hi, which is an integer giving the number of already deposited particles at that site. 
The cluster is deposited only if the heights of all deposition sites are equal. This rule 
allows deposition only if there are no gaps and leads to a morphology without 
overhangs. T h e  most important aspect of the algorithm is that the growth of different 
layers proceeds simultaneously. 

Despite its simplicity the algorithm contains by construction the random sequential 
adsorption problem (also ‘car parking problem’) for the first layer. After a sufficiently 
long time the first layer will be completely filled (‘jammed’) allowing no further 
deposition of particles. The jamming coverage can be calculated exactly in one, but 
not in higher dimensions [ 5 ] .  The first layer shows interesting correlations due to 
blocking in the jammed state. However, a moments reflection shows that already the 
second layer should not show significant blocking effects because overhangs are not 
allowed. This implies that the deposition proceeds via the growth of ‘towers’ on top 
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of the connected clusters of the first layer. The deposition of additional k-mers on to 
one tower cannot affect the deposition of k-mers onto any tower which is disconnected 
from the first within a sufficiently early layer. In this sense the towers are independent. 

Given the independence of towers the question arises how the occurrence of a 
power law in the jammed state can be understood. In [l] 6'.(f) was defined as the 
fraction of occupied area in the nth layer at time f. e.(m) = 8. is called the jamming 
coverage. The central finding of [l] was that for n + m  the relation 

A en-em=-- 
n +  

holds with an exponent 4 = 0.5 which within the error bars appeared to he independent 
of dimension and independent of k Such power law behaviour is not present in related 
mean-field multilayer deposition models [6,7]. 

Let us consider the one-dimensional case, and define an m-tower as a tower 
consisting of m adjacent k-mers which are not separated by a gap. On,, denotes the 
jamming coverage with sites belonging to m-towers in the nth layer. Clearly, 

m 

e. = 1 en,m. (2) 
m = ,  

The quantity Om,, augmented by the gap density = 1 - 8. might also be called the 
cluster size probability density function for layer n, because it represents the probability 
that a given site will belong to a cluster of mk connected sites. For n + m the cluster 
size density approaches a delta function, i.e. Om., = 1 for m = 1, and = 0 for m > 1. 
Assuming that On,* is a decreasing function of m for sufficiently large n, this suggests 
that the estimate @,,+,/e,, << 1 holds for all m in the limit n+m, n <m. 

It is then of interest to study the simplest non-trivial case in which only 2-towers 
are left. More precisely, let us assume that there exists a layer no such that for n > n, 
one has On,, = 0 for all m 3. Obviously this implies that 

e-=e,,,+- 
2 

holds for all n no ,  and thus, using (l) ,  
en.2 e. - e- =- 
2 

(3) 

(4) 

for n no. Equation (4) reduces the calculation of 8. to the calculation of the probability 
9, that a single 2-tower will decay into a 1-tower in the nth layer. 

To see this let N,,, denote the number of sites belonging to m towers in layer n 
so that O,, = N.,,/N where N is the total number of landing sites in the system. For 
our special case we have 

N n + i , , =  Nn.1-2kL ( 5 )  
where An is the number of 2-towers decaying into 1 towers in layer n. Clearly, 

N 
A.=--*  

2k 

because N/2k represents the initial number of 2-towers. Combining (4), ( 5 )  and (6) 
yields the decay probability 9" in terms of the coverages 0. as 

9" =2(e. - en+,). (7) 
We proceed to calculate the probability 9. which can be obtained exactly. 
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The event in which a 2-tower decays into a I-tower can occur whenever all sites 
of the tower have equal height. Because the 2-tower consists only of two adjacent 
columns of k-mers this means equalization of the left and the right column. At each 
equalization even the 2-tower has probability (k - l ) / (k+ l )  to decay into a I-tower, 
and with probability 2/(k+ 1) it will continue to grow as a 2-tower. Therefore 

k-1  a. =- 
kf  I E," 

where E,, is now the probability that the left and the right column will have equal 
height after the addition of exactly 2 n  k-mers. We now assume that initially all towers 
are equalized, i.e. within each tower separately the sites have equal height. If equal- 
ization occurs after addition of 2 n  k-mers this event is either the first, the second, or 
the rth ( r  6 n) equalization event because equalization can occur only after adding an 
even number of k-mers. If it is the rth equalization event this means that, including 
the initial equalization, r opportunities to decay into a 1-tower have been left out. 
Thus E," may be written as 

where eZn,, is the probability that the equalization event at time 2n  is the rth equalization. 
To calculate e,",, it is sufficient to realize that the algorithm gives each column in 

the independent towers the same growth probability. Therefore the height difference 
between the left and the right column forms a simple symmetric Bernoulli process, 
and the equalization probability for such processes is well known [8] to behave as 
e , . , , - r [ n ( 2 - ( r / n ) ] - ' / 2 e x p [ - r 2 / ( 4 n - 2 r ) .  An explicit expression is given by 

(10) 

Putting these considerations into (7) gives the following exact result for the 2-tower 
mechanism 

Together with the asymptotic estimate for e,",, this result implies the value = f  for 
the exponent in (1). 

In the following we want to employ (11) as an approximation for the multilayer 
adsorption model and to compare such an approximation to the Monte Carlo simula- 
tions of [ I]. Note that the 2-tower approximation above depends only on the assumption 
that the final state, which must consist only of 1-towers, is approached through a state 
consisting predominantly of 2-towers. These considerations do not explicitly depend 
upon the dimension of the underlying lattice, and thus the results are expected to 
remain valid in two dimensions. 

In order to compare the 2-tower model with the Monte Carlo results of [l] the 
layer number no beyond which the 2-tower approximation becomes valid, and the 
initial coverage gradient, called a,, have to be taken as fitting parameters. We write 

(12) 
where @(n) is defined by the right-hand side of (11). Several values for no ranging 
from -1 to 5 have been considered. The best value appears to be no = 0. This means 

8. - On+, = a,@( n + no) 
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that the 2-tower mechanism already begins to operate in the first layer. In figure 1 we 
plot the MC data (symbols) and the analytic result (curves) from (12). The amplitudes 
were fitted to the large n regime of the MC data. Their numerical values are adk = 2) = 
0.380, a,(k = 5 )  = 0.765 and a0(k = 10) = 0.718. Figure 1 shows good asymptotic agree- 
ment. For large k the 2-tower model fits well for all values of n. Deviations from the 
MC results for small k and n are believed to be caused not only by the neglect of 
m-tower processes for m > 2 and but also by the use of the equal height initial condition 
in the 2-tower calculations. 

We have also analysed the simulations with respect to the quantity e,, for the 
case k = 2. The results are displayed in figure 2. For sufficiently large n the dependence 
of e, ,  on m appears exponential. This further corroborates our assumption that for 
large n the 2-tower mechanism becomes dominant. 

Summarizing, we have analysed the recently introduced multilayer generalization 
..c 4.- ---A-.- --.-..--+:-I -Ao,.-+:-- nr-hlnm W p  hQrrp nraQpn+d 51 r imnlp nnsllrr+;r.l 
Y, LUG ,PI.U".,, "C'IUG.',,,',. 'l"""'yL'"L1 y " Y U L ' L ' . .  ..v ..",U yL'0"L.L'" "I .... y... "..'&,U-". 

treatment based on the 2-tower approximation which yields the exact value q5 = f  for 
the jamming coverage exponent. We find surprisingly good agreement between our 
analytical results and the simulations of [l]. This lends support to our belief that the 
2-tower approximation captures the essential new aspects of the multilayer adsorption 
model. As a consequence the power law, (l), must be viewed as a purely dynamical 

n 
Figure I. Difference 0. -Em+$ of coverages in layer n and n+ 1 against layer number n. 
The MC data denoted by symbols are taken from [ l ]  and represent dimers (circles), 5-men 
(triangles) and IO-men (crosses). The continuous curves are obtained from (12). 

m 
Fisuce 2. Partial coverages a , ,  for k = 2  plotted against m for selected values of 
n = 1.2.4, LO and 30. 
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phenomenon which is not caused by the lateral (in-plane) correlations in higher layers. 
This new finding becomes particularly important when applying the multilayer adsorp- 
tion model to experiment. 

We thank V Privman for a critical reading of the manuscript. One of us (RH) wishes 
to thank the German-Norwegian research cooperation (Project B-2) for financial 
support. 
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